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Abstract

Visual perception entails solving a wide set of tasks, e.g.,
object detection, depth estimation, etc. The predictions made
for multiple tasks from the same image are not independent,
and therefore, are expected to be ‘consistent’. We propose a
broadly applicable and fully computational method for aug-
menting learning with Cross-Task Consistency.1 The pro-
posed formulation is based on inference-path invariance
over a graph of arbitrary tasks. We observe that learning
with cross-task consistency leads to more accurate predic-
tions and better generalization to out-of-distribution inputs.
This framework also leads to an informative unsupervised
quantity, called Consistency Energy, based on measuring
the intrinsic consistency of the system. Consistency En-
ergy correlates well with the supervised error (r=0.67),
thus it can be employed as an unsupervised confidence
metric as well as for detection of out-of-distribution inputs
(ROC-AUC=0.95). The evaluations are performed on multi-
ple datasets, including Taskonomy, Replica, CocoDoom, and
ApolloScape, and they benchmark cross-task consistency
versus various baselines including conventional multi-task
learning, cycle consistency, and analytical consistency.

1. Introduction
What is consistency: suppose an object detector detects a

ball in a particular region of an image, while a depth estima-
tor returns a flat surface for the same region. This presents
an issue – at least one of them has to be wrong, because they
are inconsistent. More concretely, the first prediction domain
(objects) and the second prediction domain (depth) are not
independent and consequently enforce some constraints on
each other, often referred to as consistency constraints.

Why is it important to incorporate consistency in learn-
ing: first, desired learning tasks are usually predictions of
different aspects of one underlying reality (the scene that

1Abbreviated X-TC, standing for Cross-Task Consistency.
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Figure 1: Cross-Task Consistent Learning. The predictions made
for different tasks out of one image are expected to be consistent, as the
underlying scene is the same. This is exemplified by a challenging query
and four sample predictions out of it. We propose a general method for
learning utilizing data-driven cross-task consistency constraints. The lower
and upper rows show the results of the baseline (independent learning) and
learning with consistency, which yields higher quality and more consistent
predictions. Red boxes provide magnifications. [Best seen on screen]

underlies an image). Hence inconsistency among predictions
implies contradiction and is inherently undesirable. Second,
consistency constraints are informative and can be used to
better fit the data or lower the sample complexity. Also,
they may reduce the tendency of neural networks to learn
“surface statistics” (superficial cues) [20], by enforcing con-
straints rooted in different physical or geometric rules. This
is empirically supported by the improved generalization of
models when trained with consistency constraints (Sec. 5).

How can we design a learning system that makes consis-
tent predictions: this paper proposes a method which, given
an arbitrary dictionary of tasks, augments the learning ob-
jective with explicit constraints for cross-task consistency.
The constraints are learned from data rather than apriori
given relationships.2 This makes the method applicable to
any pairs of tasks as long as they are not statistically inde-
pendent; even if their analytical relationship is unknown,
hard to program, or non-differentiable. The primary con-

2For instance, it is not necessary to encode that surface normals are the
3D derivative of depth or occlusion edges are discontinuities in depth.
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cept behind the method is ‘inference-path invariance’. That
is, the result of inferring an output domain from an input
domain should be the same, regardless of the intermediate
domains mediating the inference (e.g., RGB�normals and
RGB�depth�normals and RGB�shading�normals are ex-
pected to yield the same normals result). When inference
paths with the same endpoints, but different intermediate
domains, yield similar results, this implies the intermediate
domain predictions did not conflict as far as the output was
concerned. We apply this concept over paths in a graph of
tasks, where the nodes and edges are prediction domains
and neural network mappings between them, respectively
(Fig. 2(d)). Satisfying this invariance constraint over all
paths in the graph ensures the predictions for all domains are
in global cross-task agreement.3

To make the associated large optimization job manage-
able, we reduce the problem to a ‘separable’ one, devise a
tractable training schedule, and use a ‘perceptual loss’ based
formulation. The last enables mitigating residual errors in
networks and potential ill-posed/one-to-many mappings be-
tween domains; this is crucial as one may not be able to al-
ways infer one domain from another with certainty (Sec. 3).

Interactive visualizations, trained models, code, and a live
demo are available at http://consistency.epfl.ch/.

2. Related Work
The concept of consistency and methods for enforcing it

are related to various topics, including structured prediction,
graphical models [24], functional maps [33], and certain
topics in vector calculus and differential topology [11]. We
review the most relevant ones in context of computer vision.

Utilizing consistency: Various consistency constraints
have been commonly found beneficial across different fields,
e.g., in language as ‘back-translation’ [3, 1, 27, 8] or in vision
over the temporal domain [44, 7], 3D geometry [10, 35, 9,
15, 52, 49, 17, 47, 54, 51, 25, 6], and in recognition and
(conditional/unconditional) image translation [14, 31, 19, 53,
16, 5]. In computer vision, consistency has been extensively
utilized in the cycle form and often between two or few
domains [53, 16]. In contrast, we consider consistency in
the more general form of arbitrary paths with varied-lengths
over a large task set, rather than the special cases of short
cyclic paths. Also, the proposed approach needs no prior
explicit knowledge about task relationships [35, 25, 47, 54].

Multi-task learning: In the most conventional form,
multi-task learning predicts multiple output domains out
of a shared encoder/representation for an input. It has
been speculated that the predictions of a multi-task net-

3inference-path invariance was inspired by Conservative Vector Fields
in vector calculus and physics that are (at a high level) fields in which
integration along different paths yield the same results, as long as their
endpoints are the same [11]. Many key concepts in physics are ‘conserva-
tive’, e.g., gravitational force: the work done against gravity when moving
between two points is independent of the path taken.
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Figure 2: Enforcing Cross-Task Consistency: (a) shows the typical
multitask setup where predictions X�Y1 and X�Y2 are trained without
a notation of consistency. (b) depicts the elementary triangle consistency
constraint where the prediction X�Y1 is enforced to be consistent with
X�Y2 using a function that relates Y1 to Y2 (i.e. Y1�Y2). (c) shows how
the triangle unit from (b) can be an element of a larger system of domains.
Finally, (d) illustrates the generalized case where in the larger system of
domains, consistency can be enforced using invariance along arbitrary paths,
as long as their endpoints are the same (here the blue and green paths). This
is the general concept behind inference-path invariance. The triangle in (b)
is the smallest unit of such paths.

work may be automatically cross-task consistent as the rep-
resentation from which the predictions are made are shared.
This has been observed to not be necessarily true in several
works [23, 50, 46, 41], as consistency is not directly enforced
during training. We also make the same observation (see
visuals here) and quantify it (see Fig. 8(a)), which signifies
the need for explicit augmentation of consistency in learning.

Transfer learning predicts the output of a target task
given another task’s solution as a source. The predictions
made using transfer learning are sometimes assumed to be
cross-task consistent, which is often found to not be the
case [48, 39], as transfer learning does not have a specific
mechanism to impose consistency by default. Unlike ba-
sic multi-task learning and transfer learning, the proposed
method includes explicit mechanisms for learning with gen-
eral data-driven consistency constraints.

Uncertainty metrics: Among the existing approaches
to measuring prediction uncertainty, the proposed Consis-
tency Energy (Sec. 4) is most related to Ensemble Averag-
ing [26], with the key difference that the estimations in our
ensemble are from different cues/paths, rather than retrain-
ing/reevaluating the same network with different random ini-
tializations or parameters. Using multiple cues is expected to
make the ensemble more effective at capturing uncertainty.

3. Method
We define the problem as follows: suppose X denotes

the query domain (e.g., RGB images) and Y={Y1,..., Yn}
is the set of n desired prediction domains (e.g., normals,
depth, objects, etc). An individual datapoint from domains
(X , Y1,..., Yn) is denoted by (x, y1,..., yn). The goal is to
learn functions that map the query domain onto the predic-
tion domains, i.e. FX={fXYj

|Yj∈Y} where fXYj
(x) out-

puts yj given x. We also define FY={fYiYj
|Yi, Yj∈Y, i6=j},

which is the set of ‘cross-task’ functions that map the predic-
tion domains onto each other; we use them in the consistency
constraints. For now assume FY is given apriori and frozen;
in Sec. 3.3 we discuss all functions fs are neural networks
in this paper, and we learn FY just like FX .
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Figure 3: Impact of disregarding cross-task consistency in learning, illustrated using surface normals domain. Each subfigure shows the results of
predicting surface normals out of the prediction of an intermediate domain; using the notation X�Y1�Y2, here X is RGB image, Y2 is surface normals, and
each column represents a different Y1. The upper row demonstrates the normals are noisy and dissimilar when cross-task consistency is not incorporated in
learning of X�Y1 networks. Whereas enforcing consistency when learning X�Y1 results in more consistent and better normals (the lower row). We will
show this causes the predictions for the intermediate domains themselves to be more accurate and consistent. More examples available in supplementary
material. The Consistency Energy (Sec. 4) captures the variance among predictions in each row.

3.1. Triangle: The Elementary Consistency Unit
The typical supervised way of training the neural net-

works in FX , e.g., fXY1
(x), is to find parameters of fXY1

that
minimize a loss with the general form |fXY1

(x)-y1| using a
distance function as |.|, e.g., `1 norm. This standard indepen-
dent learning of fXYis satisfies various desirable properties,
including cross-task consistency, if given infinite amount of
data, but not under the practical finite data regime. This is
qualitatively illustrated in Fig. 3 (upper). Thus we introduce
additional constraints to guide the training toward cross-task
consistency. We define the loss for predicting domain Y1
from X while enforcing consistency with domain Y2 as a
directed triangle depicted in Fig. 2(b):

Ltriangle
XY1Y2,|fXY1

(x)-y1|+|fY1Y2
◦fXY1

(x)-fXY2
(x)|+|fXY2

(x)-y2|.
(1)

The first and last terms are the standard direct losses for
training fXY1

and fXY2
. The middle term is the consistency

term which enforces that predicting Y2 out of the predicted
Y1 yields the same result as directly predicting Y2 out of
X (done via the given cross-task function fY1Y2

).4 Thus
learning to predict Y1 and Y2 are not independent anymore.

The triangle loss 1 is the smallest unit of enforcing cross-
task consistency. Below we make two improving modifica-
tions on it via function ‘separability’ and ‘perceptual losses’.

3.1.1 Separability of Optimization Parameters

The loss Ltriangle
XY1Y2

involves simultaneous training of two net-
works fXY1

and fXY2
, thus it is resource demanding. We

show Ltriangle
XY1Y2

can be reduced to a ‘separable’ function [42]
resulting in two terms that can be optimized independently.

From the triangle inequality we can derive:

|fY1Y2
◦fXY1

(x)-fXY2
(x)|≤|fY1Y2

◦fXY1
(x)-y2|+|fXY2

(x)-y2|,

4Operator ◦ denotes function composition: g◦h(x),g(h(x)).

which after substitution in Eq. 1 yields:

Ltriangle
XY1Y2

≤|fXY1
(x)-y1|+|fY1Y2

◦fXY1
(x)-y2|+2|fXY2

(x)-y2|.
(2)

The upper bound for Ltriangle
XY1Y2

in inequality 2 can be opti-
mized in lieu of Ltriangle

XY1Y2
itself, as they both have the same

minimizer.5 The terms of this bound include either fXY1

or fXY2 , but not both, hence we now have a loss separable
into functions of fXY1

or fXY2
, and they can be optimized

independently. The part pertinent to the network fXY1
is:

Lseparate
XY1Y2,|fXY1

(x)− y1|+ |fY1Y2
◦fXY1

(x)− y2|, (3)

named separate, as we reduced the closed triangle objective

X

Y1
4Y2

in Eq. 1 to two separate path objectives X�Y1�Y2
and X�Y2. The first term of Eq. 3 enforces the general
correctness of predicting Y1, and the second term enforces
its consistency with Y2 domain.

3.1.2 Reconfiguration into a “Perceptual Loss”
Training fXY1

using the loss Lseparate
XY1Y2

requires a train-
ing dataset with multi domain annotations for one input:
(x, y1, y2). It also relies on availability of a perfect function
fY1Y2 for mapping Y1 onto Y2; i.e. it demands y2=fY1Y2(y1).
We show how these two requirements can be reduced.

Again, from triangle inequality we can derive:

|fY1Y2
◦fXY1

(x)− y2|≤|fY1Y2
◦fXY1

(x)− fY1Y2
(y1)|+

|fY1Y2
(y1)− y2|, (4)

which after substitution in Eq. 3 yields:

Lseparate
XY1Y2

≤|fXY1(x)− y1|+ |fY1Y2◦fXY1(x)− fY1Y2(y1)|+
|fY1Y2(y1)− y2|. (5)

Similar to the discussion for inequality 2, the upper bound
in inequality 5 can be optimized in lieu of Lseparate

XY1Y2
as both

5Both sides of inequality 2 are ≥0 and =0 for the minimizer
fXY1 (x)=y1 & fXY2 (x)=y2.
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Figure 4: Learning with and without cross-task consistency shown for a sample query. Using the notation X�Y1�Y , here X is RGB image, Y1 is
surface normals, and five domains in Y are reshading, 3D curvature, texture edges (Sobel filter), depth, and occlusion edges.
Top row shows the results of standard training of X�Y1. After convergence of training, the predicted normals (Y1) are projected onto other domains (Y )
which reveal various inaccuracies. This demonstrates such cross-task projections Y1�Y can provide additional cues to training X�Y1.
Middle row shows the results of consistent training of X�Y1 by leveraging Y1�Y in the loss. The predicted normals are notably improved, especially in
hard to predict fine-grained details (zoom into the yellow markers. Best seen on screen).
Bottom row provides the ground truth. See video examples at visualizations webpage.

have the same minimizer.6 As the last term is a constant w.r.t.
fXY1

, the final loss for training fXY1
subject to consistency

with domain Y2 is:

Lperceptual
XY1Y2,|fXY1(x)−y1|+|fY1Y2◦fXY1(x)−fY1Y2(y1)|. (6)

The loss Lperceptual
XY1Y2

no longer includes y2, hence it admits pair
training data (x, y1) rather than triplet (x, y1, y2).7 Compar-
ing Lperceptual

XY1Y2
and Lseparate

XY1Y2
shows the modification boiled down

to replacing y2 with fY1Y2
(y1). This makes intuitive sense

too, as y2 is the match of y1 in the Y2 domain.
Ill-posed tasks and imperfect networks: If fY1Y2

is
a noisy estimator, then fY1Y2(y1)=y2+noise rather than
fY1Y2(y1)=y2. Using a noisy fY1Y2 in Lseparate

XY1Y2
corrupts

the training of fXY1
since the second loss term does not

reach 0 if fXY1
(x) correctly outputs y1. That is in con-

trast to Lperceptual
XY1Y2

where both terms have the same global min-
imum and are always 0 if fXY1

(x) outputs y1 – even when
fY1Y2(y1)=y2+noise. Thus Lperceptual

XY1Y2
enables a robust train-

ing of fXY1(x) w.r.t. imperfections in fY1Y2 . This is crucial
since neural networks are almost never perfect estimators,
e.g., due to lacking an optimal training process for them or
potential ill-posedness of the task y1�y2. Further discussion
and experiments are available in supplementary material.

Perceptual Loss: The process that led to Eq. 6 can be
generally seen as using the loss |g◦f(x)−g(y)| instead of

6Both sides of inequality 5 are ≥0 and =0 for the minimizer
fXY1 (x)=y1. The term |fY1Y2 (y1) − y2| is a constant and ∼0, as it
is exactly the training objective of fY1Y2 . The non-zero residual should
be ignored and assumed 0 as the non-zero part is irrelevant to fXY1 , but
imperfections of fY1Y2 .

7Generally for n domains, this formulation allows using datasets of
pairs among n domains, rather than one n-tuple multi annotated dataset.

|f(x)−y|. The latter compares f(x) and y in their explicit
space, while the former compares them via the lens of func-
tion g. This is often referred to as “perceptual loss” in super-
resolution and style transfer literature [21]–where two im-
ages are compared in the representation space of a network
pretrained on ImageNet, rather than in pixel space. Similarly,
the consistency constraint between the domains Y1 and Y2
in Eq. 6 (second term) can be viewed as judging the predic-
tion fXY1(x) against y1 via the lens of the network fY1Y2 ;
here fY1Y2 is a “perceptual loss” for training fXY1 . How-
ever, unlike the ImageNet-based perceptual loss [21], this
function has the specific and interpretable job of enforcing
consistency with another task. We also use multiple fY1Yi

s
simultaneously which enforces consistency of predicting Y1
against multiple other domains (Sections 3.2 and 3.3).

3.2. Consistency of fXY1
with ‘Multiple’ Domains

The derived Lperceptual
XY1Y2

loss augments learning of fXY1 with
a consistency constraint against one domain Y2. Straightfor-
ward extension of the same derivation to enforcing consis-
tency of fXY1

against multiple other domains (i.e. when fXY1

is part of multiple simultaneous triangles) yields:

Lperceptual
XY1Y ,|Y |×|fXY1(x)-y1|+

∑
Yi∈Y
|fY1Yi◦fXY1(x)-fY1Yi(y1)|, (7)

where Y is the set of domains with which fXY1 must be con-
sistent, and |Y | is the cardinality of Y . Notice that Lperceptual

XY1Y2
is

a special case of Lperceptual
XY1Y

where Y={Y2}. Fig. 5 summarizes
the derivation of losses for fXY1

.
Fig. 4 shows qualitative results of learning fXY1 with and

without cross-task consistency for a sample query.
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Figure 5: Schematic summary of derived losses for fXY1 .(a): Ltriangle
XY1Y2

(Eq.1). (b): Lseparate
XY1Y2

(Eq.3). (c): Lperceptual
XY1Y2

(Eq.6). (d): Lperceptual
XY1Y

(Eq.7).

3.3. Beyond Triangles: Globally Consistent Graphs
The discussion so far provided the loss for the cross-task

consistent training of one function fXY1
using elementary

triangle based units. We also assumed the functions FY were
given apriori. The more general multi-task setup is: given a
large set of domains, we are interested in learning functions
that map the domains onto each other in a globally cross-task
consistent manner. This objective can be formulated over a
graph G=(D,F) with nodes representing all of the domains
D=(X ∪ Y) and edges being neural networks between them
F=(FX ∪ FY); see Fig.2(c).

Extension to Arbitrary Paths: The transition from three
domains to a large graph G enables forming more general
consistency constraints using arbitrary-paths. That is, two
paths with same endpoint should yield the same results –
an example is shown in Fig.2(d). The triangle constraint in
Fig.2(b,c) is a special case of the more general constraint
in Fig.2(d), if paths with lengths 1 and 2 are picked for the
green and blue paths. Extending the derivations done for a
triangle in Sec. 3.1 to paths yields:
Lperceptual
XY1Y2...Yk

= |fXY1
(x)−y1|+

|fYk−1Yk
◦...◦fY1Y2

◦fXY1
(x)−fYk−1Yk

◦...◦fY1Y2
(y1)|, (8)

which is the loss for training fXY1 using the arbitrary consis-
tency path X�Y1�Y2...�Yk with length k (full derivation
provided in supplementary material). Notice that Eq. 6 is
a special case of Eq. 8 if k=2. Equation 8 is particularly
useful for incomplete graphs; if the function Y1�Yk is miss-
ing, consistency between domains Y1 and Yk can still be
enforced via transitivity through other domains using Eq. 8.

Also, extending Eq. 8 to multiple simultaneous paths (as
in Eq. 7) by summing the path constraints is straightforward.

Global Consistency Objective: We define reaching
global cross-task consistency for graph G as satisfying
the consistency constraint for all feasible paths in G. We
can write the global consistency objective for G as LG =∑
p∈P Lperceptual

p , where p represents a path and P is the set of
all feasible paths in G.

Optimizing the objective LG directly is intractable as it
would require simultaneous training of all networks in F
with a massive number of consistency paths8. In Alg.1 we de-
vise a straightforward training schedule for an approximate
optimization of LG . This problem is similar to inference in
graphical models, where one is interested in marginal distri-
bution of unobserved nodes given some observed nodes by

8For example, a complete G with n nodes includes n(n− 1) networks
and

∑L
k=2

( n
k+1

)
(k + 1)! feasible paths, with path length capped at L.

passing “messages” between them through the graph until
convergence. As exact inference is usually intractable for
unconstrained graphs, often an approximate message passing
algorithm with various heuristics is used.

Algorithm 1: Globally Cross-Task Consistent Learning of Networks F
Result: Trained edges F of graph G

1 Train each f∈F independently. . initialization by standard direct training.
2 for k ← 2 to L do
3 while LossConvergence(F) not met do
4 fij←SelectNetwork(F) . selects target network to be trained.
5 p←SelectPath(fij , k,P) . selects a feasible consistency path

for fij with maximum length k from P .
6 optimize Lperceptual

ijp . trainsfij using path constraint p in loss 8.
7 end
8 end

Instead of optimizing all terms in LG , Alg.1 selects one
network fij∈F to be trained, selects consistency path(s)
p∈P for it, and trains fij with p for a fixed number of steps
using loss 8 (or its multi path version if multiple paths se-
lected). This is repeated until all networks in F satisfy a
convergence criterion.

A number of choices for the selection criterion in Select-
Network and SelectPath is possible, including round-robin
and random selection. While we did not observe a significant
difference in the final results, we achieved the best results
using maximal violation criterion: at each step select the
network and path with the largest loss9. Also, Alg.1 starts
from shorter paths and progressively opens up to longer ones
(up to length L) only after shorter paths have converged.
This is based on the observation that the benefit of short
and long paths in terms of enforcing cross-task consistency
overlap, while shorter paths are computationally cheaper9.
For the same reason, all of the networks are initialized by
training using the standard direct loss (Op.1 in Alg.1) before
progressively adding consistency terms.

Finally, Alg.1 does not distinguish between Fx and Fx
and can be used to train them all in the same pool. This
means the selected path p may include networks not fully
converged yet. This is not an issue in practice, because, first,
all networks are pre-trained with their direct loss (Op.1 in
Alg.1) thus they are not wildly far from their convergence
point. Second, the perceptual loss formulation makes train-
ing fij robust to imperfections in functions in p (Sec. 3.1.2).
However, as practical applications primarily care about Fx,
rather than Fy, one can first train Fy to convergence using
Alg.1, then start the training of Fx with well trained and con-
verged networks Fy. We do the latter in our experiments.10

Please see supplementary material for how to normalize and
balance the direct and consistency loss terms, as they belong
to different domains with distinct numerical properties.

9See supplementary material for an experimental comparison.
10A further cheaper alternative is applying cross-task consistent learning

only on Fx and training Fy using standard independent training. This is
significantly cheaper and more convenient, but still improves Fx notably.
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Figure 6: Qualitative results of predicting multiple domains along with the pixel-wise Consistency Energy. The top queries are from the Taskonomy
dataset’s test set. The results of networks trained with consistency are more accurate, especially in fine-grained regions (zoom into the yellow markers), and
more correlated across different tasks. The bottom images are external queries (no ground truth available) demonstrating the generalization and robustness of
consistency networks to external data. Comparing the energy against a prediction domain (e.g., normals) shows that energy often correlates with error. More
examples are provided on the project page, and a live demo for user uploaded images is available at the demo page. External Queries: Bedroom in Arles,
Van Gogh (1888); Cotton Mill Girl, Lewis Hine (1908); Chernobyl Pripyat Abandoned School (c. 2009). [best seen on screen]

4. Consistency Energy
We quantify the amount of cross-task consistency in the

system using an energy-based quantity [28] called Consis-
tency Energy. For a single query x and domain Yk, the
consistency energy is defined to be the standardized average
of pairwise inconsistencies:

EnergyYk
(x) , 1

|Y|−1

∑
Yi∈Y,i6=k

|fYiYk
◦fXYi

(x)−fXYk
(x)|−µi

σi
, (9)

where µi and σi are the average and standard deviation of
|fYiYk

◦fXYi
(x)−fXYk

(x)| over the dataset. Eq. 9 can be
computed per-pixel or per-image by average over its pixels.
Intuitively, the energy can be thought of as the amount of
variance in predictions in the lower row of Fig. 3 – the higher
the variance, the higher the inconsistency, and the higher the
energy. The consistency energy is an intrinsic quantity of
the system and needs no ground truth or supervision.

In Sec. 5.3, we show this quantity turns out to be quite
informative as it can indicate the reliability of predictions
(useful as a confidence/uncertainty metric) or a shift in the in-
put domain (useful for domain adaptation). This is based on
the fact that if the query is from the same data distribution as
the training and is unchallenging, all inference paths of a sys-
tem trained with consistency path constraints work well and
yield similar results (as they were trained to); whereas under
a distribution shift or for a challenging query, different paths
break in different ways resulting in dissimilar predictions,
and therefore, creating a higher variance. In other words,
usually correct predictions are consistent while mistakes are
inconsistent. (Plots 8(b), 8(c), 8(d).)

5. Experiments
The evaluations are organized to demonstrate the pro-

posed approach yields predictions that are I. more consistent

(Sec.5.1), II. more accurate (Sec.5.2), and III. more gener-
alizable to out-of-training-distribution data (Sec.5.4). We
also IV. quantitatively analyze the Consistency Energy and
report its utilities (Sec.5.3).
Datasets: We used the following datasets in the evaluations:

Taskonomy [48]: We adopted Taskonomy as our main training
dataset. It includes 4 million real images of indoor scenes with
multi-task annotations for each image. The experiments were
performed using the following 10 domains from the dataset: RGB
images, surface normals, principal curvature, depth (zbuffer),
reshading, 3D (occlusion) edges, 2D (Sobel) texture edges, 3D
keypoints, 2D keypoints, and semantic segmentation. The tasks
were selected to cover 2D, 3D, and semantic domains and have
sensor-based/semantic ground truth. We report results on the
test set. Also, as one of the out-of-domain tests, we use a ver-
sion of Taskonomy images where they undergo distortions (e.g.,
blurring).
Replica[43] has high resolution 3D ground truth and enables
more reliable evaluations of fine-grained details. We test on 1227
images from Replica (no training), besides Taskonomy test data.
CocoDoom [30] contains synthetic images from the Doom video
game. We use it as one of the out-of-training-distribution datasets.
ApolloScape [18] contains real images of outdoor driving scenes.
We use it as another out-of-training-distribution dataset.
NYU [40]: We also evaluated on NYUv2. The findings are similar
to those on Taskonomy and Replica (in supplementary material).

Architecture & Training Details: We used a UNet [37]
backbone architecture. We benchmarked alternatives, e.g.,
ResNet [13], and found UNets to yield superior pixel-wise
predictions. All networks in FX and FY have a similar archi-
tecture. The networks have 6 down and 6 up sampling blocks
and were trained using AMSGrad [36] and Group Norm [45]
with learning rate 3×10−5, weight decay 2×10−6, and batch
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Query Sensor Ground Truth Multi-Task Network Cycle-Based Consistency Baseline Perceptual Loss Baseline (L1 UNet) GeoNet X-Task ConsistencyTaskonomy

Figure 7: Learning with cross-task consistency vs various baselines compared over surface normals. Queries are from Taskonomy dataset (top) or
external data (bottom). Similar comparison for other domains and more images are provided on the project page, and a live demo for user uploaded images is
available at the demo page. [best seen on screen]

size 32. Input and output images were linearly scaled to the
range [0, 1] and resized down to 256× 256. We used `1 as
the norm in all losses and set the max path length L=3. We
experimented with different loss normalization methods and
achieved the best results when the loss terms are weighted
negative proportional to their respective gradient magnitude
(details in supplementary material).
Baselines: The main baseline categories are described be-
low. To prevent confounding factors, our method and all
baselines were implemented using the same UNet network
when feasible and were re-trained on Taskonomy dataset.

Baseline UNet (standard independent learning) is the main
baseline. It is identical to consistency models in all senses, except
being trained with only the direct loss and no consistency terms.

Multi-task learning: A network with one shared encoder and
multiple decoders each dedicated to a task, similar to [23]. This
baseline shows if consistency across tasks would emerge by shar-
ing a representation without explicit consistency constraints.

Cycle-based consistency, e.g.[53], is a way of enforcing con-
sistency between two domains assuming a bijection between
them. This assumption is violated between many domains (e.g.
RGB↔3D, as texture cannot be recovered from 3D). This base-
line is a special case of the triangle in Fig.2(b) by setting Y2=X .

Baseline perceptual loss network uses frozen random (Gaussian
weight) networks as FY , rather than training them to be cross-
task functions. This baseline would show if the improvements
were owed to the priors in the architecture of constraint networks,
rather than them executing cross-task consistency constraints.

GAN-based image translation: We used Pix2Pix [19], which is
conditional GAN based framework [31].

Blind guess:A query-agnostic statistically informed guess com-
puted from data for each domain (visuals in supplementary). It
shows what can be learned from general dataset regularities. [48]

GeoNet [35] is a task-specific consistency method analytically
curated for depth and normals. This baseline shows how closely
the task-specific consistency methods based on known analytical
relationships perform vs the proposed generic data-driven method.
The “original” and “updated” variants represent original authors’
released networks and our re-implemented and re-trained version.

5.1. Consistency of Predictions
Fig. 8(a) (blue) shows the amount of inconsistency in test

set predictions (Consistency Energy) successfully decreases
over the course of training. The convergence point of the
network trained with consistency constraints is well below
baseline independent learning (orange) and multi-task learn-
ing (green)–which shows consistency among predictions
does not naturally emerge in either case without explicit
constraining. Plots of individual loss terms similarly show
minimizing the direct term does not lead to automatic mini-
mization of consistency terms (provided in supplementary).

5.2. Accuracy of Predictions
Figures 6 and 7 compare the prediction results of net-

works trained with cross-task consistency against the base-
lines in different domains. The improvements are consider-
able particularly around the difficult fine-grained details.

Quantitative evaluations are provided in Tab. 1 for Replica
dataset and Taskonomy datasets on depth, normal, reshading,
and pixel-wise semantic prediction tasks. Learning with con-
sistency led to large improvements in most of the setups. As
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Method

Setup Replica Dataset Taskonomy Dataset
Normals Depth reShading Normals Depth reShading Semantic Segm.

Perceptual Err. Direct Perceptual Err. Direct Perceptual Err. Direct Perceptual Err. Direct Perceptual Err. Direct Perceptual Err. Direct Direct
Depth reShade `1 Err. Norm. reShade `1 Err. Norm. Depth `1 Err. Depth reShade Curv. Edge(2D) `1 Err. Norm. reShade Curv. Edge(2D) `1 Err. Norm. Depth Curv. Edge(2D) `1 Err. X-Entropy (↓)

Blind Guess 4.75 33.31 16.02 22.23 19.94 4.81 15.74 5.14 16.45 7.39 38.11 3.91 12.05 17.77 22.37 27.27 7.96 12.77 7.07 19.96 7.14 3.53 12.62 24.85
Taskonomy Networks 3.73 11.07 6.55 18.06 15.39 3.72 8.70 3.85 11.43 7.19 22.68 3.68 10.70 7.54 18.82 20.83 6.65 14.10 4.55 11.72 4.69 3.54 11.19 16.58

Multi-Task 5.58 22.11 6.03 15.30 16.14 2.44 7.24 3.36 10.32 8.78 27.32 3.65 10.16 7.07 17.18 19.55 7.54 13.67 2.81 9.19 3.54 3.56 10.75 11.61
GeoNet (original) 6.23 19.34 7.48 13.88 14.03 4.01 × × × 7.71 27.35 3.32 9.09 9.58 15.44 18.73 4.03 10.78 4.07 × × × × × ×
Cycle Consistency 5.65 22.39 7.13 8.81 30.33 3.84 10.26 8.68

Baseline Perceptual Loss 4.88 15.34 4.99 8.59 23.98 3.41 10.01 6.17
Pix2Pix 4.52 19.03 7.70 8.12 26.23 3.83 10.33 9.40

Baseline UNet (`1 ) 4.69 13.15 4.96 10.47 12.99 1.99 6.90 2.74 9.55 8.17 20.94 3.41 9.98 5.95 13.62 15.68 7.31 12.61 2.27 9.58 3.38 3.78 10.85 10.45 0.246
GeoNet (updated) 4.62 12.79 4.70 10.47 12.75 1.83 × × × 8.18 20.84 3.40 9.99 5.91 13.77 15.76 7.52 12.67 2.26 × × × × × ×

X-Task Consistency 2.07 9.99 4.80 7.01 11.21 1.63 5.50 1.96 9.22 4.32 12.15 3.29 9.50 6.08 9.46 12.66 3.61 9.82 2.29 7.13 2.51 3.28 9.38 10.52 0.237

0.25% Data: Baseline 5.65 21.76 7.61 8.86 26.91 3.78 10.31 8.17
0.25% Data: Consistency 2.41 12.26 7.28 5.07 15.96 3.74 9.93 9.19

Table 1: Quantitative Evaluation of Cross-Task Consistent Learning vs Baselines. Results are reported on Replica and Taskonomy Datasets for four
prediction tasks (normals, depth, reshading, pixel-wise semantic labeling) using ‘Direct’ and ‘Perceptual’ error metrics. The Perceptual metrics evaluate the
target prediction in another domain (e.g., the leftmost column evaluates the depth inferred out of the predicted normals). Bold marks the best-performing
method. If more than one value is bold, their performances were statistically indistinguishable from the best, according to 2-sample paired t-test α = 0.01.
Learning with consistency led to improvements with large margins in most columns. (In all tables, ` norm values are multiplied by 100 for readability.
Methods that cannot be run for a given target are denoted by ‘×’.)

most of the pixels in an image belong to easy to predict re-
gions governed by the room layout (e.g., ceiling, walls), the
standard pixel-wise error metrics (e.g., `1) are dominated by
them and consequently insensitive to fine-grained changes.
Thus, besides standard Direct metrics, we report Perceptual
error metric (e.g., normal�curvature) that evaluate the same
prediction, but with a non-uniform attention to pixel proper-
ties.11 Each perceptual error provides a different angle, and
the optimal results would have a low error for all metrics.

The corresponding Standard Error for the reported num-
bers are provided in supplementary material, which show the
trends are statistically significant. Tab. 1 also includes eval-
uation of the networks when trained with little data (0.25%
subset of Taskonomy dataset), which shows the consistency
constraints are useful under low-data regime as well.

We adopted normals as the canonical task for more exten-
sive evaluations, due to its practical value and abundance of
baselines. The conclusions remained the same regardless.

Using Consistency with Unsupervised Tasks: Unsuper-
vised tasks can provide consistency constraints, too. Ex-
amples of such tasks are 2D Edges and 2D Keypoints
(SURF[2]), which are included in our dictionary. Such tasks
have fixed operators that can be applied on any image to
produce their respective domains without any additional su-
pervision. Interestingly, we found enforcing consistency
with these domains is still useful for gaining better results
(see supplementary material for the experiment). The ability
to utilize unsupervised tasks further extends the applicability
of our method to single/few task datasets.

5.3. Utilities of Consistency Energy
Below we quantitatively analyze the Consistency Energy.

The energy is shown (per-pixel) for sample queries in Fig. 6.
Consistency Energy as a Confidence Metric (Energy

vs Error): Plot 8(b) shows the energy of predictions has a
strong positive correlation with the error computed using

11For example, evaluation of normals via the normal�curvature metric
is akin to paying more attention to where normals change, hence reducing
the domination of flat regions, such as walls, in the numbers.
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Figure 8: Analyses of Consistency Energy.

ground truth (Pearson corr. 0.67). This suggests the energy
can be adopted for confidence quantification and handling
uncertainty. This experiment was done on Taskonomy test
set thus images had no domain shift from the training data.

Consistency Energy as a Domain Shift Detector:
Plot 8(c) shows the energy distribution of in-distribution
(Taskonomy) and out-of-distribution datasets (ApolloScape,
CocoDoom). Out-of-distribution datapoints have notably
higher energy values, which suggests that energy can be
used to detect anomalous samples or domain shifts. Us-
ing the per-image energy value to detect out-of-distribution
images achieved ROC-AUC=0.95; the out-of-distribution
detection method OC-NN [4] scored 0.51.

Plot 8(d) shows the same concept as 8(c) (energy vs do-
main shift), but when the shift away from the training data
is smooth. The shift was done by applying a progressively
stronger Gaussian blur with kernel size 6 on Taskonomy
test images. The plot also shows the error computed using
ground truth which has a pattern similar to the energy.
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Figure 9: Error with Increasing (Smooth) Domain Shift.
The network trained with consistency is more robust to the shift.

Error (Post-Adaption) Error (Pre-Adaptation)
Novel Domain # images Consistency Baseline Consistency Baseline
Gaussian blur

(Taskonomy)

128 17.4 (+14.7%) 20.4 46.2 (+12.8%) 53.016 22.3 (+8.6%) 24.4

CocoDoom 128 18.5 (+19.2%) 22.9 54.3 (+15.8%) 64.516 27.1 (+24.5%) 35.9
ApolloScape 8 40.5 (+11.9%) 46.0 55.8 (+5.5%) 59.1

Table 2: Domain generalization and adaptation on CocoDoom, ApolloScape, and
Taskonomy blur data. Networks trained with consistency show better generalization to new
domains and a faster adaptation with little data. (relative improvement in parentheses)

Figure 10: Domain adaptation results shown for three target domains
(ApolloScape [18], CocoDoom [30], Gaussian-blur Taskonomy [48]). Net-
works trained with consistency show better adaptation with little data.

We find the reported utilities noteworthy as handling un-
certainty, domains shifts, and measuring prediction confi-
dence in neutral networks are open topics of research [32, 12]
with critical values in, e.g., active learning [38], real-world
decision making [22], and robotics [34].

5.4. Generalization & Adaptation to New Domains
To study: I. how well the networks generalize to new

domains without any adaptation and quantify their resilience,
and II. how efficiently they can adapt to a new domain given
a few training examples by fine-tuning, we test the networks
trained on Taskonomy dataset on various new domains. The
experiment were conducted on smooth (blurring [20]) and
discrete (Doom [30], ApolloScape [18]) shifts. For (II), we
use a small number (16-128) of images from the new domain
to fine-tune the networks with and without consistency con-
straints. The original training data (Taskonomy) is retained
during fine-tuning so prevent the networks from forgetting
the original domain [29].

Models trained with consistency constraints generally
show more robustness against domain shifts (see Fig. 9 and
pre-adaptation numbers in Table 2) and a better adaptation
with little data (see post-adaptation numbers in Table 2 and
Fig. 10). The challenging external queries shown in Fig-
ures 6&7&1 similarly denote a good generalization.
Supplementary Material: We defer additional discussions
and experiments, particularly analyzing different aspects of
the optimization, stability analysis of the experimental trends,

and proving qualitative results at scale to the supplementary
material and the project page.

6. Conclusion and Limitations
We presented a general and data-driven framework for

augmenting standard supervised learning with cross-task
consistency. The evaluations showed learning with cross-
task consistency fits the data better yielding more accurate
predictions and leads to models with improved generaliza-
tion. The Consistency Energy was found to be an informative
intrinsic quantity with utilities toward confidence estimation
and domain shift detection. Below we briefly discuss some
of the limitations and assumptions:

Path Ensembles: We used the various inference paths
only as a way of enforcing consistency. Aggregation of
multiple (comparably weak) inference paths into a single
strong estimator (e.g., in a manner similar to boosting) is
a promising direction that this paper did not address. Per-
forming the aggregation in a probabilistic manner seems
viable, as we found the errors of different paths are suffi-
ciently uncorrelated, suggesting possibility of assembling a
strong estimator.

Unlabeled/Unpaired Data: The current framework re-
quires paired training data. Extending the concept to unla-
beled/unpaired data, e.g., as in [53], appears feasible and
remains open for future work.

Categorical/Low-Dimensional Tasks: We primarily ex-
perimented with pixel-wise tasks. Classification tasks, and
generally tasks with low-dimensional outputs, will be inter-
esting to experiment with, especially given the more severely
ill-posed cross-task relationships they induce.

Optimization Limits: The improvements gained by in-
corporating consistency are bounded by the success of avail-
able optimization techniques, as addition of consistency con-
strains at times makes the optimization job harder. Also,
implementing cross-task functions as neural networks makes
them subject to certain output artifacts similar to those seen
in image synthesis with neural networks.

Adversarial Robustness: Lastly, if learning with cross-
task consistency indeed reduces the tendency of neural net-
works to learn surface statistics [20] (Sec. 1), studying its
implications in defence against adversarial attacks will be
worthwhile.
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Energy Analyses: We performed post-hoc analyses on
the Consistency Energy. More concrete understanding of the
properties of the energy and potentially using it actively for
network modification, e.g, in unsupervised domain adapta-
tion, requires further focused studies.
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